रासायनिक दुर्घटनाएँ: समाधान, राहत व प्रबन्धन

प्रस्तावना- विश्व स्वास्थ्य संगठन के मुताबिक रासायनिक दुर्घटनाएँ रसायनों का अनियन्त्रित बहाव हैं, जो वर्तमान में घातक हैं अथवा भविष्य में घातक हो सकते हैं। ऐसी घटनाएँ अकस्मात या फिर जानकारी के बाद भी हो सकती हैं। देश में 1984 की भोपाल गैस त्रासदी इसका प्रत्यक्ष उदाहरण है। यूनियन कार्बाइड कम्पनी की लापरवाही के परिणामस्वरूप विषैली गैस मिथाइल आइसोसाइनाइड के रिसाव ने देखते ही देखते 2500 से अधिक निर्दोष जिन्दिगयों को लील लिया। इस घटना की भयावहता के जख्म आज भी भोपाल की आबोहवा में तैर रहे हैं। रासायनिक दुर्घटनाएँ न केवल मनुष्यों को, बल्कि इनके साथ प्रकृति व सम्पत्ति को भी प्रभावित करती हैं। वर्तमान वैज्ञानिक युग में जिस कदर उद्योगों में घातक रसायनों का प्रयोग बढ़ा है, उससे यहाँ कार्य करने वाले लाखों किमयों पर जान का खतरा मंडरा रहा है। साथ ही आस-पास की मानवीय बस्तियाँ और प्रकृति भी दुर्घटनाओं की जद में आ गई हैं। औद्योगिक इकाइयों में इस्तेमाल आने वाले विस्फोटक रसायनों का भंडारण व परिवहन पर्यावरण में इनके रिसाव की आशंका को बढ़ाता है। इकाइयों में हुई जरा सी चूक बड़ी रासायनिक आपदा को सहज ही आमन्त्रण देती है। थोड़ी सी सूझबूझ और सम्पूर्ण जानकारी की मदद से घातक रासायनिक दुर्घटनाओं से विश्व को बचाया जा सकता है। अब जब हम यह दृढ़ संकल्प कर चुके हैं, कि रासायनिक घटनाओं से संसार को बचाना है तो इन घटनाओं के प्रमुख कारक, स्रोत व इनके निवारण को जानना भी जरूरी हो गया है। साथ ही इस दिशा में भारत सरकार एवं विश्व द्वारा की गई पहल से भी साक्षात्कार करते हैं।

रासायनिक आपदा के कारक - भारत के सभी क्षेत्रों के 301 जिलों, 25 राज्यों एवं 03 केन्द्र शासित प्रदेशों में 1861 विशाल दुर्घटना संकटापन्न इकाइयाँ (एमएएचयू) हैं। इनके अलावा हजारों की संख्या में पंजीकृत एवं घातक रासायनिक कारखाने (एमएएचयू मापदंड के नीचे के स्तर वाले) तथा असंगठित क्षेत्र हैं जो घातक किस्म के रसायनों का इस्तेमाल कर रहे हैं। इससे गम्भीर व जटिल स्तर की आपदाओं का खतरा लगातार बना हुआ है। रासायनिक आपदाओं का बड़ा स्रोत घातक रसायनों का परिवहन है। देश में उद्योगों की भूख मिटाने के लिये विशाल स्तर पर सड़क, रेल, वायु, समुद्र व पाइपलाइनों के जिरए रसायनों का परिवहन होता है। रसायनों की ढुलाई में हुई असावधानी रासायनिक आपदा को अन्जाम दे सकती है। रासायनिक घटनाओं का दूसरा बड़ा कारक छपाईखाने, रबड़ उद्योग, पेस्टीसाइट कारखाने,

पटाखा उद्योग, रेडियो एक्टिव केन्द्र एवं परमाणु संयंत्र केन्द्र आदि हैं जहाँ अभिक्रियाओं के दौरान सीधे क्लोरीन, अमोनिया, फास्फोरिक अम्ल, सल्फ्यूरिक अम्ल व पिकरिक अम्ल जैसे घातक रसायनों का प्रयोग होता है। प्रयोग में हुई जरा सी चूक बड़ी रासायनिक दुर्घटना का कारण बन सकती है। कारखानों में रसायनों के भंडारण की उचित व्यवस्था न होना भी रासायनिक आपदाओं को दावत देता है। मध्यप्रदेश के धार जिले में 2003 में बीपीसीएल ब्लॉटिंग प्लांट में टैंक से हुआ एलपीजी का रिसाव और 2004 में तिमलनाडु के कैम्पप्लास्ट मैतूर में हुआ क्लोरीन का रिसाव इसके प्रमुख उदाहरण हैं। जिसमें 27 कर्मी बुरी तरह जख्मी हुए थे।

प्राकृतिक आपदा से रासायनिक दुर्घटनाएँ - टैंक में लीकेज से रसायन का रिसाव ही रासायनिक आपदा को जन्म देगा ऐसा कहना गलत होगा। कई बार भूकम्प, चक्रवात, सुनामी और तूफान जैसी प्राकृतिक आपदाएँ भी घातक रासायनिक आपदाओं का कारण बन जाती है। वर्ष 1999 में उड़ीसा में आए चक्रवात के दौरान फास्फोरिक अम्ल का बहाव प्राकृतिक आपदाजन्य रासायनिक आपदा का बड़ा उदाहरण है। कांडला पत्तन के निकट 2001 में आए भूकम्प से हुआ, क्रिलोनाइटाइल का रिसाव भी प्रकृति-जनित रासायनिक आपदा है। आतंकवादी हमले भी रासायनिक आपदाओं में इजाफे का विशाल कारण है। 08 मार्च, 2003 को गुवाहाटी के डिगबोई में यूनाइटेड लिबरेशन फ्रंट ऑफ आसाम (उल्फा) द्वारा आईओसी के एक तेल से भरे टैंकर को जला दिया गया। टैंकर में लगभग 4500 किलो लीटर तेल था। जिसके जलने से लगभग 100 मीटर ऊँची आग की लपटों ने 3000 लोगों को अपनी चपेट में ले लिया। इसी तरह ऊपरी असम के दुलियाजान में उल्फा ने ऑइल इंडिया लिमिटेड की पाइपलाइन को जला दिया। इस पाइपलाइन के द्वारा काथलगुड़ी के बिजली निर्माण संयंत्र को तेल की आपूर्ति की जाती थी। इसके अलावा कारखानों में सांगठनिक स्तर पर होने वाली चूकें एवं कार्मिकों में रसायनों की उचित जानकारी व जागरूकता के अभाव के चलते भी समय-समय पर कई रासायनिक दुर्घटनाएँ घटित होती रहती हैं।

रासायनिक जोखिमों को दूर करने के लिये भारत में किए गए सुरक्षा उपाय - हमारे देश में व्यापक कानूनी रूपरेखा विद्यमान है, जो विभिन्न क्षेत्रों में काम करती है। परिवहन में सुरक्षा, बीमा व क्षतिपूर्ति को समाहित करने के लिये कई नियमों को लागू किया जा चुका है। इसमें प्रमुख हैं:-

1. विस्फोटक अधिनियम 1884

- 2. पर्यावरण सुरक्षा अधिनियम 1986, इसमें 1991 में संशोधन किया गया
- 3. कारखाना अधिनियम 1948
- 4. मोटरवाहन अधिनियम 1988
- 5. सार्वजनिक देनदारी बीमा अधिनियम 1991
- 6. पेट्रोलियम अधिनियम 1934
- 7. कीटनाशक अधिनियम 1968
- 8. राष्ट्रीय पर्यावरण प्राधिकरण अधिनियम 1995
- 9. आपदा प्रबन्धन अधिनियम 2005

भारत सरकार ने इन अधिनियमों के अलावा गोदी कामगार नियमावली और उनके संशोधनों के माध्यम से रासायनिक सुरक्षा व दुर्घटनाओं के प्रबन्धन पर कानूनी रूपरेखा को मजबूत किया है। नये कानून जैसे एमएसआईएचसी नियमावली 1989 जिसे 1994 व 2000 में संशोधित भी किया गया है, ईपीपीआर नियमावली 1996, एसएमपीवी नियमावली 1981 (इसे 2002 में संशोधित किया गया), सीएमवी नियमावली 1989 (इसे 2005 में संशोधित किया गया) आदि। गैस सिलेंडर नियमावली 2004 में आई। खतरनाक रासायनिक अपशिष्ट नियमावली 1989 आदि हैं। इनके माध्यम से रासायनिक सुरक्षा व रासायनिक दुर्घटनाओं के नियन्त्रण पर भारत सरकार प्रयासरत है। इसी कड़ी में भारत के राष्ट्रीय आपदा प्रबन्धन प्राधिकरण एनडीएमए ने रासायनिक आपदा प्रबन्धन के लिये अतिविशिष्ट दिशा-निर्देश तैयार किए हैं। ये निर्देश मन्त्रालय, विभागों व राज्य प्राधिकरणों को अपनी प्रबन्धन योजनाओं को तैयार करने में मदद करते हैं। साथ ही आवश्यक जानकारियाँ उपलब्ध कराते हैं। एनडीएमए द्वारा जारी दिशा-निर्देश रासायनिक आपदाओं से निपटने हेतु विभिन्न स्तरों के कार्मिकों से सक्रिय, भागीदारी पूर्ण, बहुविषयक एवं बहुक्षेत्रीय दृष्टिकोण अपनाने की माँग करते हैं। एनडीएमए भारत में रासायनिक सुरक्षा को मजबूत करने के लिये मुख्य कारखाना निरीक्षणालय के पुनर्गठन का भी काम कर रही है। राज्य सरकारें भी समयस्मय पर रासायनिक आपदा प्रबन्धन पर सम्मेलनों का आयोजन करती रहती हैं।

13 मई, 2016 को हिमाचल प्रदेश सरकार द्वारा रासायनिक आपदा सम्मेलन हुआ। इस सम्मेलन में हिमाचल प्रदेश सरकार सिहत, एनडीएमए एवं फिक्की ने भी भागीदारी निभाई। सम्मेलन के दौरान ध्येय पेट्रोलियम व गैस उद्योगों में आपदा जोखिमों को कम करने के उपायों पर बातचीत हुई। हिमाचल प्रदेश के मुख्यमंत्री वीरभद्र सिंह ने सम्मेलन में सुरक्षित इंजीनियरिंग, सुरक्षा उपकरणों के बेहतर प्रदर्शन व नियमित जाँच से मानवीय त्रुटियों को दूर करके रासायनिक दुर्घटनाओं से बचने की बात पर जोर दिया। सम्मेलन में ही प्रदेश में 362 जोखिमपूर्ण उद्योग चिन्हित किए गए। इसमें सिरमौर, सोलन व ऊना जिलों के 8 उद्योगों को अधिक खतरनाक बताया गया।

इसी तरह 17 फरवरी 2006 में एनडीएमए द्वारा रासायनिक आपदा प्रबन्धन पर दिल्ली में कार्यशाला का आयोजन हुआ। कार्यशाला में आपदा प्रबन्धन से जुड़े सभी मन्त्रालयों, वन एवं पर्यावरण मन्त्रालय, प्रदूषण मन्त्रालय, रोजगार एवं श्रम मन्त्रालय, गृह मन्त्रालय, परिवहन मन्त्रालय, उर्वरक एवं रसायन मन्त्रालय, डीआरडीओ, भाभा एटॉमिक रिसर्च संस्थान के अधिकारियों ने भी भाग लिया।

इसके साथ ही एनडीएमए देश में आगामी रासायनिक आपदाओं से बचने के लिये सरकार के मन्त्री समूह को विशेष जानकारी उपलब्ध कराता है। पर्यावरण एवं वन मन्त्रालय भी एनडीएमए के सहयोग से रासायनिक औद्योगिक आपदा प्रबन्धन पर राष्ट्रीय कार्ययोजना को अन्तिम रूप देने की प्रक्रिया में है जो कि भारत में रासायनिक आपदा प्रबन्धन के लिये रोडमैप के रूप में काम करेगी।

इसके अतिरिक्त रासायनिक दुर्घटनाओं के पूर्वानुमान एवं चेतावनी हेतु आधुनिक प्रणाली के विकास पर बल दिया जा रहा है। सेटेलाइट एवं अन्य प्रौद्योगिकी को शामिल कर आकस्मिक सूचना तन्त्र का भी विस्तार हो रहा है। किसी भी रासायनिक दुर्घटना में तत्काल चिकित्सा मिल जाने पर घटना के दुष्प्रभावों को कम किया जा सकता है। इसके लिये चिकित्सालयों एवं एयर एम्बुलेन्सों की उपलब्धता पर भी भारत सरकार ध्यान दे रही है। 1984 की भोपाल गैस त्रासदी में पीड़ितों को तत्काल उचित प्राथमिक उपचार न मिलने के कारण 2500 लोगों की मौत होना इसका बड़ा उदाहरण है। निजी क्षेत्र में सामाजिक निजी भागीदारी को प्रोत्साहित करने पर बल दिया जा रहा है। रासायनिक दुर्घटना की स्थिति में राहत व बचाव कार्यों में समुदाय की भूमिका महती होती है। अतः आपदा प्रबन्धन में समुदाय को शामिल करने पर बल दिया जा रहा है।

तालिका 1 : भारत में घटी प्रमुख रासायनिक घटनाएँ 2002-2006

इकाई का नाम	तिथि	कारण	क्षति
जीएसीएल, वड़ोदरा, गुजरात	5.9.2002	क्लोरीन का विस्फोट	4 मौतें, 20 घायल
आईपीसीएल, गंधार, गुजरात	20.12.2002	क्लोरीन का रिसाव	18 कर्मचारी, 300 ग्रामीण घायल
आईओसी रिफाइनरी, डिगबोई, असम	7.3.2003	स्प्रिट टैंक में आग लगना	11 करोड़ रुपये के धन की हानि
रेनबेक्सी लेबोरेटरी लिमिटेड, मोहाली, पंजाब	11.6.2003	टोलोइन का रिसाव	2 मौतें, 19 घायल
बीपीसीएल बॉटलिंग प्लान्ट, धार, मध्य प्रदेश	5.10.2003	टैंक से एलपीजी का रिसाव	शून्य
ओरिएंट पेपर मिल अमला, शहडोल (मध्य प्रदेश)	13.10.2003	द्रव्य क्लोरीन का रिसाव	88 कर्मी घायल
आईडीएल गल्फ ऑइल, हैदराबाद, आंध्रप्रदेश	25.11.2003	विस्फोट	8 मौतें, 05 घायल, 01 गुमशुदा
अनिल एंटरप्राइजेज, जखीरा, रोहतक, हरियाणा	28.4.2004	एलपीजी में आग लगना	6 मौतें, 2 घायल
एचआईएल उद्योग, मण्डल, केरल	6.7.2004	टोलोइन गैस में आग लगना	शून्य
श्यामलाल इंडस्ट्रीज, अहमदाबाद, गुजरात	12.4.2004	बेंजीन के टैंकर में आग लगने से	शून्य
केमिकल कारखाना, महाराष्ट्र	31.3.2004	हैग्जेन गैस के रिसाव से आग लगना	1 मौत, 8 घायल
कैम्पलास्ट, मेहूर, तमिलनाडु	18.7.2004	क्लोरीन का रिसाव	27 घायल
गुजरात रिफाइनरी, वड़ोदरा	29.10.2004	घोल आबादकार में विस्फोट	2 मौतें, 13 घायल
रेनबैक्सी लैब, मोहाली, पंजाब	3.10.2004	शुष्क कक्ष में आग	1 <mark>मौत</mark> , 2 घायल
मैटिक लैब यूनिट, वन, आंध्रप्रदेश	5.3.2005	सोडियम हाइड्राइड का रिसाव	8 मौतं
कोरोमान्डल फर्टिलाइजर्स लिमिटेड एन्नोर, तमिलनाडु	22.7.2005	अमोनिया का रिसाव	5 घायल
गल्फ ऑयल कॉरपोरेशन लिमिटेड	4.10.2005	विस्फोट	2 मौतें, 2 घायल
ऑर्किड केमिकल्स एंड फार्मास्यूटिकल लिमिटेड, तमिलनाडु	3.11.2005	आग व विस्फोट	2 मौतें, 4 घायल
इंडियन ऑयल कॉरपोरेशन लिमिटेड, मथुरा (उत्तर प्रदेश)	29.12.2005	आग	1 मौत
कनौरिया केमिकल्स, सोनभद्र (उत्तर प्रदेश)	29.3.2006	क्लोरीन रिसाव	6 मौतें, 23 घायल
अंजना एक्सप्लोसिव लिमिटेड, आंध्रप्रदेश	18.7.2006	घातक रसायनों का रिसाव	5 मौतें
रवि ऑर्गेनिक्स लिमिटेड मुजफ्फरनगर, (उत्तर प्रदेश)	19.9.2006	गैस का रिसाव	1 मौत
रिलायंस इंडस्ट्रीज रिफाइनरी जामनगर, गुजरात	25.10.2006	तेल की गर्म भाप के रिसाव से विस्फोट	2 मौतें
यूनियन कार्बाइड कम्पनी, भोपाल मध्य प्रदेश	3.12.1984	मिथाइल आइसोसाइनाइड का रिसाव	2500 से अधिक मौतें

स्रोत : नेशनल डिजास्टर मैनेजमेंट अथॉरिटी ऑफ इंडिया की अप्रैल 2007 में प्रकाशित रिपोर्ट

रासायनिक आपदाओं के दुष्प्रभाव - रासायनिक आपदाओं से न केवल मानव जीवन प्रभावित होता है, बल्कि इनका असर लम्बे समय तक पर्यावरण, जल, वायु और मिट्टी पर नजर आता है। सम्पत्ति पर भी इन दुर्घटनाओं का प्रभाव एक अन्तराल तक बना रहता है। दुर्घटना के समय निकलने वाले क्लोरीन, फास्फोरस, एनिलिन जैसे घातक रसायनों के कारण कई बार पूरी पारिस्थितिकी बदलकर जैव जगत पर प्रभाव डालती है। क्लोरीन व फास्फोरस जैसे रसायन वायुमण्डल के जलवाष्प में घुलकर अन्य सान्द्र अम्लों जैसे हाइड्रोक्लोरिक अम्ल, फास्फोरिक अम्ल, सल्फ्यूरिक अम्ल आदि का निर्माण करते हैं जो संघनन के बाद अम्लीय वर्षा करते हैं। यह अम्लीय वर्षा मानव के साथ फसलों और ऐतिहासिक इमारतों के लिये बेहद घातक होती है। इसका ताजा उदाहरण ताजमहल की बाहरी दीवारों पर आने वाला पीलापन है। अम्ल मृदा की अम्लता बढ़ाकर मृदा की उर्वरा शक्ति को घटाते हैं।

रासायनिक दुर्घटनाओं पर नियन्त्रण के लिये अन्तरराष्ट्रीय प्रयास - संयुक्त राष्ट्र संघ के अनुसार ऐसी घटनाएँ जो अचानक होती हैं या ऐसे बड़े दुर्भाग्य जो इंसान के आधारभूत ढाँचे और समुदाय के सामान्य क्रियाकलापों पर विघ्न डालते हैं आपदा कहलाती हैं। औद्योगिक क्रान्ति ने विकास के तमाम रास्ते खोले हैं। बल्कि हमें आपदाओं के मुहाने पर भी लाकर खड़ा कर दिया है। ये आपदाएँ उद्योगों के विकास के साथ दिन दूनी रात चौगुनी गित से बढ़ रही हैं। आपदाओं के इस चक्रव्यूह से विश्व को बाहर निकालना बड़ा सवाल है। कोई रासायनिक दुर्घटना बड़ी घटना है इसका निर्धारण उस दुर्घटना के दुष्परिणामों से होता है। रसायनों से होने वाली आपदाओं से विश्व को बचाने के लिये समय-समय पर कई कदम उठाए गए हैं।

- अन्तरराष्ट्रीय श्रम संगठन 22 जून, 1993 को संयुक्त राष्ट्र संघ द्वारा अन्तरराष्ट्रीय श्रम संगठन (आईएलओ) का गठन हुआ। इस संगठन का उद्देश्य घातक रसायनों से होने वाली बड़ी रासायनिक दुर्घटनाओं से बचाव, निवारण व रोकथाम के लिये नियम बनाना है। इस संगठन का सीधा सम्बन्ध भारत के रासायनिक आपदा प्रबन्धन तन्त्र से है। जो भारत के साथ रासायनिक आपदा के मुद्दे पर चर्चा करता रहता है।
- प्रोजेक्ट अपील संयुक्त राष्ट्र पर्यावरण कार्यक्रम, डिवीजन ऑफ टेक्नोलॉजी इंडस्ट्री ऑफ इकोनॉमिक ऑफिस और यूनाइटेड नेशंस एनवायरन्मेंट प्रोग्राम द्वारा 1988 में अपील प्रोजेक्ट (एपीईएलएल) बनाया गया। इसका उद्देश्य स्थानीय स्तर पर आकस्मिक रासायनिक दुर्घटनाओं व प्रौद्योगिकीय घटनाओं के घातक प्रभावों को कम करना था। भारत में भी नेशनल सिक्योरिटी

- काउंसिल द्वारा इस पंचवर्षीय (1992-97) अपील योजना को लागू किया गया। इसके तहत देश में रासायनिक दुर्घटना वाले 6 अतिसंवेदनशील क्षेत्रों का चयन किया गया।
- आईएसडीआर संयुक्त राष्ट्र संघ ने (आईएसडीआर) इंटरनेशनल स्ट्रेटजी फॉर डिजास्टर रिडक्शन बनाया। इसका उद्देश्य रासायनिक आपदाओं के प्रभाव को कम करना था। इसके तहत समाज के विभिन्न वर्गों व समुदायों को रासायनिक आपदाओं के प्रति शिक्षित व जागरूक किया गया।
- पायलट प्रोजेक्ट ट्रांस अपील संयुक्त राष्ट्र पर्यावरण कार्यक्रम (यूएनईपी) द्वारा जून 2002 में पायलेट प्रोजेक्ट ट्रांस अपील की शुरुआत हुई। इस प्रोजेक्ट के तहत कारखाना कार्मिकों, आम लोगों व उद्यमियों को रसायनों के परिवहन व ढुलाई में बरती जाने वाली सावधानियों के प्रति जागरूक किया।
- एसएआईसीएम समझौता फरवरी 2006 में भारत सिहत विश्व के 190 देशों ने मिलकर एसएआईसीएम (स्टेटिक अप्रोच टू इंटरनेशनल केमिकल मैनेजमेंट) समझौते पर हस्ताक्षर किए। समझौते का उद्देश्य 2020 तक रसायनों के सुरक्षित प्रयोग के लक्ष्य को प्राप्त करना है।

सन्दर्भ

- 1. नेशनल इंस्टीट्यूट ऑफ डिजास्टर मैनेजमेंट, मिनिस्ट्री ऑफ होम अफेयर्स, की मार्च 2009 की केमिकल डिजास्टर मैनेजमेंट वर्कशॉप की प्रोसीडिंग
- 2. नेशनल डिजास्टर मैनेजमेंट, अथॉरिटी ऑफ इंडिया की अप्रैल 2007 में प्रकाशित केमिकल डिजास्टर मैनेजमेंट गाइडलाइंस ऑन केमिकल डिजास्टर्स
- 3. इंडिया वाटर पोर्टल
- 4. नवसंचार समाचार डॉट कॉम में 13 मई 2016 को प्रकाशित रिपोर्ट
- 5. एनएससी डॉट ओआरजी डॉट इन
- 6. एनडीएमए डॉट जीओबी डॉट इन